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We study complex systems or networks in which each node holds an internal dynamics and interacts with
other nodes through some kinds of topologies. Collective behavior with dynamical fluctuations is analyzed in
complex systems. The dynamical fluctuations of a node can be divided into two parts: one is the internal
dynamical fluctuation of the node and the other is the external dynamical fluctuation caused by other nodes.
Based on a theoretical analysis, a hidden feedback mechanism is identified in complex systems, which is
illustrated in a macroeconomic network and in a city-population network. Furthermore, we study the effect of
the topology of the networks on the feedback mechanism. The feedback mechanism is preserved for hub nodes
in the networks with a scale-free topology as well as in the networks with an evolving topology. By the hidden
feedback mechanism, the observation data can be utilized to judge directly whether the system of each node is

with positive feedback or with negative feedback even without knowing its dynamical model.

DOI: 10.1103/PhysRevE.79.026107

I. INTRODUCTION

Complex systems pervade all of science, from neurobiol-
ogy to statistical physics [1]. Many real-world networks can
be considered as complex systems where the dynamics is
determined by the interaction of a large number of nodes
through some kinds of topologies with each node holding an
internal dynamical rule. For example, for a macroeconomic
network, a node can be viewed as a country; the interaction
of nodes is the trade between the countries, and the internal
dynamics of a country is the dynamics of GDP in the coun-
try. Taking a city-population network as another example, a
node can be a city; the interaction of nodes is the population
transfer between the cities, and the internal dynamics of the
city reflects the change of the population with time. Collec-
tive behavior emerges in such complex systems. For in-
stance, the behavior of synchronization has been found in
various complex networks, where the dynamics of each node
is an identical or nonidentical limit cycle, and the interaction
of nodes is under some kinds of topologies [2-5]. Another
kind of collective behavior is the fluctuation dynamics,
which arises when complex systems are exposed to various
kinds of shocks. In the macroeconomic network, every coun-
try is exposed to the shocks such as the variation of money
policy and fiscal policy. For the transport and internet sys-
tem, the traffic increases on highways during peak hours and
surges in the number of internet users during working hours
[6]. Generally, the dynamics of each node in such complex
systems mentioned above is determined by two factors: (1)
the internal dynamics of the node and (2) the external dy-
namics of the node that is decided by the interactive coupling
with other nodes. Accordingly, the fluctuation dynamics of
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complex systems includes the internal dynamical fluctuation
and the external dynamical fluctuation for each node.

There are many studies focusing on the statistical fluctua-
tion behavior of the time series of complex systems. A gen-
eral feature related to the scaling properties of the statistical
fluctuation behavior is called the Taylor’s law, which has
been found in many complex systems such as ecology, life
sciences, physics, and economy [7,8]. Recently, the same
relationship is explored on complex networks [6,9—12]. Most
of the models that try to explain the statistical fluctuation
behavior in complex systems to date assume that the dynam-
ics of the nodes or units is stationary, whose activity can be
formalized by an additive quantity. As the dynamics of many
real-world complex systems is determined by the interaction
of a large number of nodes with each node holding an inter-
nal dynamical rule, the scaling properties of the statistical
fluctuation behavior is not enough to identify the underlying
fluctuation dynamics of complex systems [8].

In this paper, we study the fluctuation dynamics of com-
plex systems, where the dynamics of each node is decided by
the internal dynamics, external dynamics, and shocks. Spe-
cifically, we aim at answering the questions: whether the
external dynamical fluctuation strengthens or weakens the
internal dynamical fluctuation of a node; under what condi-
tions, the dynamics of a node is dominated only by its inter-
nal dynamics. These questions motivate the research in this
paper. First, a model is proposed in Sec. II and a feedback
mechanism is derived in the model. In Sec. III, the feedback
mechanism is illustrated. The illustration of the feedback
mechanism in a macroeconomic network is presented in Sec.
IIT A and that in a city-population network is presented in
Sec. III B, respectively. The effect of the topology on the
feedback mechanism is shown in Sec. IV. In Sec. V, the
real-world data are used to illustrate the feedback mecha-
nism. Finally, summary and discussions will be given in Sec.
VL
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FIG. 1. A network. (a) The internal dynamical rule of node i, (b)
the network with three nodes, and (c) the summation of the internal
dynamics and external dynamics.

II. MODEL

Let us consider N different linear systems denoted by £;
with an input r; in Fig. 1(a), where each system is assumed to
be asymptotically stable. By interacting with each other
through some kinds of topologies, these N linear systems
constitute a complex system, where each node represents one
linear system [23]. Figure 1(b) shows such a complex net-
work with three nodes. Each node [e.g., see node 1 in Fig.
1(b)] has input flux and output flux. As £; is a linear system,
we divide the dynamics of a node in the network into two
parts [13] [see Fig. 1(c)]:

yit) =y + (o), (1)

where y,(t) is the state of the node in the network. For a
macroeconomic system, y,(¢) is the GDP of country i at time
t; for a city-population system, y,(#) is the population in city
i at time 7. y;"(¢) is the internal dynamics of system £; with
input r;. Namely, y;"(7) is the dynamics of system £; without
interacting with any other systems or nodes [see Fig. 1(a)].
¥$¥(7) represents the effect of external net flux dynamics
Qi(1)=2Y1; (1 -2,0; (1) with I;;(1) being the input flux
of node i from node j and O;(t) being the output flux of
node i to node j. It is worth noting that both /;; and O;;
represent the amount of flux from nodes j to i, i.e., I; ;=0
[see Fig. 1(b)].

As shown in Figs. 2(a) and 2(b), the network at an equi-
librium point implies that the internal dynamics, the external
dynamics, and the net flux are in equilibrium yi,m*, yj'm*, and
Q?, respectively. However, internal linear system L; cease-
lessly suffers from shocks or noises [see Fig. 2(c)], yielding
the internal fluctuation Ay!™(f). In addition to shocks, the
system L; in the network suffers from the net flux fluctuation
Ri(t)zQi(t)—Qf as well [see Fig. 2(d)], which yields the ex-
ternal fluctuation Ay{*(r). Then the network fluctuation of
the system £; is the summation of the internal and external
fluctuations Ay, (r)= Ay!™(r)+ Ay$*(¢) [see Fig. 2(d)]. The ef-
fect of the shocks is characterized by a stochastic variable
¢;(r) with the normal distribution in the present paper ¢;(z)
=&(0)ay(t) with &(r)~N(0,1) and «;(r)>0. Herein, an im-
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PHYSICAL REVIEW E 79, 026107 (2009)

@ - v
Q; F (b)

int int
Yi +AY; ®
fi 1—l) © ShOCkSw intse

Yi +A y:“'(t)
shocksw
l

W]
& B yi+a Y0
PR Vi HAY;® Ri(ti) exty

o —> Ei yi +AY?n(t)

Qil_)

@

Av,0Q/yF @

FIG. 2. Internal and external dynamical fluctuations. (a), (b) The
equilibrium point of the internal and external dynamics. (c), (d) The
internal and external fluctuations, and (e) the feedback mechanism.

portant question emerges, i.e., does the external fluctuation
Ay(s) strengthen or weaken the internal fluctuation
Ay™(1)?

To address this problem, we first calculate the net flux
fluctuation R;(r). Assume that the larger y;(¢) is, the larger
input flux and output flux of node i at time step ¢ are. This
assumption is consistent with the case y<<1 in Ref. [14] for
an internet system. It is also plausible for some other real-
world networks. For example, in the macroeconomic net-
work, the larger GDP one country has, the larger imports and
exports the country has. For the city-population network, the
higher population one city has, the larger population transfer
the city has. The same phenomena can also be found in the
traffic system and the river network system. Here, we name
such phenomena as preferential flow. Hence, the output flux
of node j at time step ¢ is linearly proportional to the state of
the node at time step -1, i.e., Eﬁ\;IOi,j(t):kjyj(t—l) with 0
<k;<1; the flux from node j to i is also linearly propor-
tional to the state of the node i, i.e., O, (t)=s; ()k;y,(t—1)
with the following s, ;():

k]

> wyyt=1)
1=1

1) = NLM 2

where O =<w; ;<1 represents a weighted topological structure
of the network. w; ;=0 implies no flux from node ; to node /.
We assume w; ;=0 in the present paper. Thus,

N
0,(t) = > sij(Oky(t=1) = kiy(t=1). (3)
j=1

Equation (3) ensures the flux conservation because
N _wiydi=1) _
iz 5 -0 K= ) =kpy(=1).
The steady net flux Q" can be calculated by
N w y*
¢ i

S
Wl,jyl
=1
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If Q >0, clearly node i has a positive net flux balance.
On the other hand, Q <0 means a negative net flux balance
for node i.

The general form of the internal dynamics of node i, the
linear system L;, can be given as

P
RO E by (e =) + 2 g it = J), (5)
=0

where u,(f) is the input of the system, L; and P; are constants,
L; is the order of the system, and b and g are the parameters
of the system. Figure 1(a) shows the case that £; has a con-
stant input r;. Then the network dynamics with preferential
flow for node i [see Fig. 2(d)] can be described by

L P;
yi(t) = 2 b jyt—j)+ E 8 L0t =j)+ Pt =j)+r.],
j=1 j=0
(6)

where Qi(t)=Ri(t)+Q?<, which is defined by Egs. (2) and (3).

If N is sufficiently large, then the relationship between
R,(t+1) and Ay;(r) can be derived through a nontrivial ma-
nipulation (see Appendix A):

Rit+1)=Ay,(0Q; 1y, . (7)

Equation (7) implies a hidden feedback mechanism. Accord-
ing to Eq. (7), Fig. 2(d) can be reorganized as Fig. 2(e),
which actually describes the hidden feedback mechanism:
(1) if node i has a positive net flux balance, then the sign of
R(t+1) is identical to that of Ay,s), namely, QT
>0=sgn[R;(t+1)]=sgn[Ay,(r)], resulting in a positive feed-
back for node i; (2) if node i has a negative net flux balance,
then the sign of R,(t+1) is opposite to that of Ay;(r), namely,
Q <0=sgn[R(t+ 1)]——sgn[Ay,(t)] yielding a negative
feedback for node i; (3) if Q =0, the fluctuation dynamics of
nodes is decided only by thelr internal fluctuation dynamics.

According to the control theory [15], suppression of dis-
turbances (shocks) is an internal mechanism for a negative
feedback system. A positive feedback system, on the other
hand, generally suffers more from fluctuations. Hence, we
have the major results: if Qf >0, then the external dynamical
fluctuation strengthens the internal dynamical fluctuation due
to the positive feedback, whereas if QT <0, the external dy-
namical fluctuation weakens the internal dynamical fluctua-
tion due to the negative feedback. If QT:O, the external dy-
namical fluctuation has no effect on the internal dynamical
fluctuation.

III. ILLUSTRATION OF THE FEEDBACK MECHANISM

A. Illustration of the feedback mechanism
in a macroeconomic network

We next illustrate the derived feedback mechanism in a
macroeconomic network. The internal macroeconomic dy-
namics of country i can be described by
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FIG. 3. (Color online) Demonstration of the hidden feedback
mechanism by the evolution of fluctuation of y,—(t)—yf (blue
solid line) and feedback input R;(r) (red dotted line) in two coun-
tries. (a) The sign of y,(r)— y is identical to that of R i(1), implying
a positive feedback effect, and (b) the sign of y;(1)— y is opposite to
that of R,(r), implying a negative feedback effect. The parameter
values and the initial states of y; in the simulation are set as
follows: N=150; k;, ¢;, v;, Tj, wyj» 2> ¥:(0), and y(1) are uniformly
distributed in the interval (0,0.8), (0.1,0.7), (0,0. 9) (0.3,1),
[0,1], (0,50), (50,150), and (50,150), respectively. ¢;(r)=&(r)a;(2)
_0'01§l(t)yl(t 1)

m(t) (c;+vc; )ylm(t -1)-v; c,ylm(t -2)+z;, (8)
where ¢;, v;, z; are macroeconomic parameters [16]. N coun-

tries interact with each other through trade links, and thereby
constitute a macroeconomic network

yilt) = (c;+vic)y(t = 1) —viciyt = 2) + 7+ Q1) + (1),

Dk (t=1)

N
W’Ty([ _
0,1 =2 N
=1
> w; Ty (t=1)
=1

—kyt=1), (9

where y;(r) represents the GDP of country i at time step f;
¢;(1) is the effect of shocks; Ej 1% represents
exports and k;y,(t—1) denotes imports of country i; 7; is a
parameter [17]; w;; models the trade barrier between two
countries. w; ;=0 means no trade flux from countries i to j.

The simulation results in Fig. 3(a) reveal that for the
country that gains from a positive net trade balance, the sign
of R,(¢) is identical to that of fluctuation y,-(t)—y;k, which
implies that the macroeconomic system of the country be-
comes a positive feedback system. Thus the macroeconomic
system of the country fluctuates more than its corresponding
internal macroeconomic system due to the feedback effect.
On the other hand, for the country that suffers from a nega-
tive net trade balance, the sign of R;(7) is opposite to that of
vi(t)- y;k [see Fig. 3(b)]. Thus, the macroeconomic system of
the country becomes a negative feedback system and expe-
riences less fluctuations than its internal macroeconomic sys-
tem. Figure 4 illustrates the simulation results obtained from
the comparison of the strength of fluctuations in the macro-
economic systems of countries and their corresponding inter-
nal macroeconomic systems, which are defined by
SOl -y 1y PO =Yy, respec-
tively. Clearly Flg 4 agrees with the derived feedback
mechanism well.
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FIG. 4. (Color online) Comparison of the strength of fluctua-
tions in the systems of countries (blue solid line) and their internal
dynamical systems (red dotted line). (a) The systems of the coun-
tries show more fluctuations than their internal dynamical systems
in the case of the positive net trade balance due to the positive
feedback. (b) The systems of the countries show less fluctuations
than their internal dynamical systems in the case of the negative net
trade balance due to the negative feedback. The parameter values
are set the same as those of Fig. 3.

B. Illustration of the feedback mechanism
in a city-population network

The theoretical results on the feedback mechanism require
a linear system for the internal dynamics of nodes. However,
the internal dynamics of nodes for many real-world systems
is generated by nonlinear systems. For such systems, the
feedback mechanism still holds around the equilibrium point.
We next show the fact numerically by a city-population net-
work. The internal population dynamics of a city is generated
by the logistic map [24]: y"()=ay™(-D[1-y"(t=1)].
Then, the city-population network can be described by

yilt) = ay(t = D[1 =y, (t=1)]+ 0(t) + ¢(1),

N
iYilt = Dky;(t—1)

Q,(1) = E . ij 2

> wyyi(t=1)

I=1

—ky(t=1), (10)
j=1

where y,(¢) represents the population of city i at time step 7;
¢;(7) is the effect of shocks; k;y;(t—1) denotes the population
N wipilt=Dky;(t-1)
. . . . =1 Eﬁlwl,jy.l(t_l)
lation moving in city i; and w;; is the topology of the net-
work. Figure 5 shows the feedback mechanism with the re-
sults similar to those in Figs. 3 and 4.

moving out city i and represents the popu-

IV. EFFECT OF THE TOPOLOGY ON THE FEEDBACK
MECHANISM

A. Feedback mechanism in a scale-free network

Many real-world networks are found to be scale-free, im-
plying that the degree distribution of the networks follows
the power law [18-20]. Large degree nodes or hub nodes
play essential roles in the scale-free networks. To verify the
feedback mechanism in the scale-free networks, a scale-free
undirected network with exponent 1.8 is constructed. The
network is composed of N nodes. An edge between nodes i
and J, /; ;, means a route for the output of node i flowing to
node j and a route for the output of node j flowing to node i
in the context. We then define 0<w, ;<1 to describe the
barrier for the output of node j flowing to node i, as well as
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FIG. 5. (Color online) Feedback mechanism in a city-population
network. (a) The sign of the fluctuation of population y;(z)— y;k (blue
solid line) is identical to that of the feedback input R;(¢) (red dotted
line) in a city with Q?‘>O, (b) the sign of the fluctuation of popu-
lation (blue solid line) is opposite to that of the feedback input (red
dotted line) in a city with Q?< <0, (c) the systems of the cities (blue
solid line) show more fluctuations than their internal dynamical
systems (red dotted line) in the case of QT >0, and (d) the systems
of the cities (blue solid line) show less fluctuations than their inter-
nal dynamical systems (red dotted line) in the case of Ql_*<0. The
parameter values in the simulation are set as follows: N=150; a;, k;,
and w; ; are uniformly distributed in the interval (2.0,2.6), (0,0.6),
and [0,1], respectively. ¢;(1)=E& (1) (1)=0.01&(1)y;(t—1). For a
delicate comparison, 2R;(t) is plotted in panels (a) and (b).

the 0<w; ;<1 to describe the barrier for the output of node
i flowing to node j. If there is no edge between nodes i and
J» then w; ;=w;;=0. For a node i with a large degree, there
are a large number of nodes that connect to it, implying that
there are a large number of routes for the the output flux of
node i, which suggests a large value of k;. Therefore, we
assume that k; is uniformly distributed in the interval
(0,d;/N), where d; is the degree of node i. The dynamical
rule of each node and the parameter setting are the same as
those in Sec. IIT A. The steady net flux QT and the feedback
signal R;(r) are calculated. Figure 6(a) shows the evolution of
R(r) and y,(z)- y;k of a large degree node (hub) with a nega-
tive net balance flux. Figure 6(a) confirms the feedback
mechanism within large degree nodes (hubs) in the scale-free
network since yi(t)—y;k and R,(7) are in antiphase. The feed-
back mechanism also holds in networks with other topolo-
gies such as a network with a Possion degree distribution and
a network with an exponential degree distribution.

The derivation of the feedback mechanism needs a suffi-
ciently large number of nodes and completely connected to-
pology, i.e., needs sufficiently large degrees of all the nodes
in the network. A node with a small degree in a scale-free
network may violate the feedback mechanism. For example,
the fluctuation of a node with only one link may be domi-
nated by a large degree node that it links to, rather than
holding the feedback mechanism. If there are too many such
small degree nodes in the network, the feedback mechanism
in large degree nodes may also be destroyed.
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FIG. 6. (Color online) The effect of the topology of the network
on the feedback mechanism. The result in (a) is obtained in a scale-
free network whose topology does not change with time. y,(¢)— yj
(blue solid line) and R,(r) (red dotted line) are in antiphase for a
large degree node with Q?‘<O, implying that the mechanism is
preserved for the large degree nodes in the scale-free network. The
results in (b), (c), and (d) are obtained in a scale-free network with
an evolving topology. The initial topology is the same as that in (a).
(b) Shows the fluctuation of y;(z) (blue solid line) around yf(t)
(black dotted line) (c) shows the fluctuation of Q;(¢) (red dotted
11ne) around Q, “(1) (black solid line), and (d) shows that y;(r)
—y (1) (blue sohd line) is in antiphase with 10R;(r)=10[Q(r)
—Q “(1)] (red dotted line). The parameter values in the simulations
are set as follows: N= 1000, k; is uniformly distributed in the inter-
val (0,d;/N), other parameters are set the same as that in Fig. 3. In
panels (b)—(d), only 50 data points are plotted. The simulation re-
sults from 1 to 100 000 time steps are sampled at every 2000 time
steps to obtain the 50 data points.

B. Feedback mechanism in a network
with an evolving topology

A weight matrix W=(w; ;)yxy can be used to represent the
topology of the completely connected network. The steady
state and the steady net flux of node i, y* and Q* depend on
the weight matrix W=(w; ;) NXN- leferent W causes different
y;k and Q We denote y and Q as |(W, D and
0, | Wi D , respectively, to spemfy thls dependency hereon.
Thus if W changes with time, i.e., if there is a different W(z)
at each time step #, there will be a correspondlng steady state
and steady net flux at each time step y, (1) |[w

t)|[W [y TESPECtivEly.

We first confirm the feedback mechanism in a simple sce-
nario of the topology evolution. In this scenario, the evolu-
tion of the network topology can be described by introducing
a random variable with the zero mean to the weight matrix in
a completely connected network. Assume that the random
variable follows normal distribution (other distribution laws,
such as the uniform distribution work as well), w; ()
=w; (0)+& (B, (Dw; (0) with >0, & (1)~N(0,1), and
B; (1) >0. We investigate the network behavior within a time
window 7, and find that y, (t)|[w fluctuates around

Olyxn’

JDvxn
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FIG. 7. (Color online) The effect of topology noise on the steady
state y. (t)|[w (,)]NXMkofanode @ v, (z‘)|[W FrIN. (blue solid line)
ﬂuctuates around V; 0)|[w Oy (black dotted line). (b) The dis-
tribution of y; ROX: takes a form of normal distribution. f[y (1)] is the
probability densny of Y “(r). The parameter values in the 91mulat10n
are set as follows: N= 10 Bij(0)=0.1, k;, ¢;, v, Tp, w; 0), z;, y,(0),
and y;(1) are uniformly distributed in the interval (0.2, 0.8), (0.1,
0.8), (0, 0.9), (0.3, 1), [0, 1], (0, 50), and (50, 150), and (50, 150),
respectively.

¥, (O)|[W (Olyy [see Fig. 7(a)]. We denote the means of y. (1)
and 0. (t) within the time window 7 as y =2 0, ()T and
Q E 00, *(1)/ 7, respectively. Since the dlStrlbuthIl of y, (1)
takes a form of normal distribution with y. *(0) being the
mean [see Fig. 7(b)], it is natural to 1nvest1gate the feedback
mechanlsm by con51der1ng the relationship between y,(¢)
—y (0) and Q,(1)— 0, “(0). Appendlx B further proves that
0, (t Q *(0) and yl(t) -y, “(0) are in in-phase (antiphase)
when Q (0)>O(Q (0)<0) which confirms the feedback
mechanism in this case of the evolving topology.

For a general case of the topology evolution, we can t uti-
lize the average steady net flux over time window 7, Q to
judge the behavior of the fluctuations of the network. If Q
>0, then node i tends to have a positive feedback s1gnal
otherwise node i is likely to have a negative feedback signal.
The evolution of the topology of a great number of real-
world networks results in the rewiring dynamics [21,22]. We
investigate the feedback mechanism in a network with rewir-
ing dynamics. We consider the rewiring dynamics in the
model by following six steps. Step 1: Construct and initiate
the network. We start a network with the topology the same
as that in Sec. IV A. Step 2: Update the states of the nodes in
the network according to Eq. (9). Step 3: Select an edge
among all edges randomly. Suppose that edge /; ; is selected
at this step. Step 4: Disconnect the selected edge /; ; from the
network by setting w; ;=w;,;=0, d;=d;~ 1, d;=d;~ 1, k;=k{(1
-1/d;), and k;=k;(1-1/d,). Step 5: Select two nodes in the
network to add the edge dlsconnected from nodes i and j.
The first node, node m, is selected according to the preferen-
tial attachment mechanism, by which node m is selected with
a probability d,,/2,d,. The second node, node n, is selected
among a node set ®,. P, is generated by collecting all
nodes that have no edge connecting with node m. Node n is
selected with a probability d,/ quqjmdq. Attach the edge [;;
to the two nodes m and n by letting w,, , and w,, ,, uniformly
distributed in the interval (0,1), d,,=d,,+1, d,=d,+1, k,,
=k,(1+1/d,), and k,=k,(1+1/d,). Step 6: Go to step 2.
Since the topology in Fig. 6(a) does not evolve with time, the
steady net flux Q;k does not change with time. With the initial
topology the same as that in Fig. 6(a) w; (t) in Figs.
6(b)-6(d) evolves with time, hence, y. (t)|[w RUIN. and
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FIG. 8. (Color online) The fluctuation of GDP y;(t)-y; (t) (blue
solid line) and that of the feedback signal R;(1)=Q;(r)— Q (1) (red
dotted line) drawn by the real data. (a) For the U.S,, the sign of
feedback signal R;(r) is opposite to that of the fluctuation of GDP.
(b) For Japan, the sign of R,(f) is nearly identical to that of the
fluctuation of GDP. For a delicate comparison, 10R;(z) is plotted in
panel (b).

)|[W (Olyey evolve with time as well. Figure 6(b) shows
that Vi (t) ﬁuctuates around y; *(1) and Fig. 6(c) shows that
Q1) fluctuates around Q. *(¢), implying that ¥, *(7) and 0. (1)
are the trends of y;(r) and Q,(1), respectively. By removing
the trends from y;(r) and Q,(¢), we find in Fig. 6(d) that
yi(t)—y;k(t) is in antiphase with Qi(t)—Qf(t), which agrees
with the feedback mechanism since Qf<0.

V. ILLUSTRATION OF THE FEEDBACK MECHANISM
WITH REAL-WORLD DATA

E3

The calculation of the net flux balance Q Ql.
—ETOQ (t)/ 7 for a network with an evolving topology, is
needed to determine whether a system in the network is a
positive or a negative feedback system. Although the exact
mathematical models of many real-world complex systems
are generally not available, the observation data of these sys-
tems, Q;(r) and y,(¢), are usually available. Since 0. *(¢) and
Y, *(¢) can be viewed as the trends of Q,(r) and y,(r) [note that
Q (¢) is the net flux at time step ¢, while 0, (t)|W(t) [0l
is the steady net flux for an evolving network at time step t],
respectively, Q can be estimated by averaging Q; (¢) within a
time window 7, i.e., Q =20, W) r== —0Qi(t)/ 7. For ex-
ample, the observatlon data on the dynamics of the net trade

Q,(t) and GDP y,(t) for each country during the period be-
tween 1976 and 2005 are available [25]. We first get O (1)
and y, *(¢) by estimating the trends of the net trade Q,(¢) and
GDP y;(1), respectively. Then we calculate Q for each coun-
try by averaging the variable of the net trade over the period
between 1976 and 2005. We find that Q >0 for Japan and
Q <0 for the United States. Therefore according to the
feedback mechanism derived in this work, even without
knowing the theoretical models of the internal and external
dynamics, we conclude that the macroeconomic system for
the United States is a negative feedback system, i.e., the sign
of the feedback signal R;(f)=Q; (t) 0. *(1) is opposite to that
of the fluctuation of GDP y;(#) -y, (). On the other hand, the
macroeconomic system in Japan is a positive feedback sys-
tem. Such conclusions agree with the real data well, which
are shown in Fig. 8.
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VI. SUMMARY AND DISCUSSION

In summary, we proposed a model of complex systems
with preferential flow among nodes to study the fluctuation
behavior, and derived a feedback mechanism in the model.
We illustrated the feedback mechanism in both a macroeco-
nomic network and a city-population network, which dem-
onstrated the effectiveness of the theoretical results. Though
our analytical results require a linear internal dynamics of a
node, the numerical simulation on the city-population system
shows that the feedback mechanism holds near the equilib-
rium point for a network even with nonlinear internal dy-
namics.

Furthermore, we verified the feedback mechanism in a
complex system with a scale-free topology and found that
the mechanism is preserved for hub nodes in such a network.
We also study the feedback mechanism in a network with an
evolving topology. Two cases of the topology evolving are
considered. One considers the effect of the topology noise on
the feedback mechanism; the other includes the rewiring dy-
namics. The feedback mechanism is confirmed in both the
two cases.

The feedback mechanism can be used to estimate the
strength of the fluctuations of the nodes by calculating the
steady net flux of the nodes. More precisely, the feedback
mechanism can be used to judge whether the external fluc-
tuation strengthens the internal fluctuation. When the exact
mathematical model for a system is not available, the obser-
vation data can be utilized to judge whether the system of a
node in the network is a positive feedback or a negative
feedback system. To evaluate the strength of the fluctuations
of a node in the network, we need not the data set of all
nodes. We merely need the time series of in-flux, out-flux,
and output of the node to be evaluated. Of course, the trends
of these data should be estimated.

The scaling properties of the statistic fluctuation behavior
in complex systems, the Taylor’s law, has been studied in
much of the literature [6—12]. The law states that the rela-
tionship between the fluctuations and the mean of a system
variable can be written as fluctuations= const X mean”.
Enormous empirical investigations show that 1/2<y<1.
Impact inhomogeneity and constituent correlations may be
the underlying mechanism for generating the Taylor’s law
with any value of 7y [8]. The feedback mechanism between
the external fluctuation and the internal fluctuation in the
present paper may be another way to generate the Taylor’s
law with 1/2<y=1. Consider a simple case of our model
that all the nodes in the network are identical. If they are
completely disconnected from the network, they have iden-
tical averages and fluctuations of the outputs. When they are
connected with each other under some kinds of topology, the
steady output of each node y or the average output of each
node, depends on the steady net flux Q Larger Q induces
larger y Meanwhile, larger Q with Q >0 means a stron-
ger pos1t1ve feedback effect, which causes hlgher fluctua-
tions. On the other hand, smaller Q with Q <0 induces
smaller y and causes lower fluctuations. In short the feed-
back mechanism in the present paper shows that if a node
has positive(negative) feedback, then a higher(lower) aver-

026107-6



FEEDBACK MECHANISM IN NETWORK DYNAMICS WITH ...

age of the output and higher(lower) fluctuations of the output
are obtained, which agrees well with the Taylor’s law. Fur-
ther investigation of the relationship between the Taylor’s
law and the effect of the feedback is a future work.

APPENDIX A: DERIVATION OF THE RELATIONSHIP
BETWEEN R;(t+1) AND y;(®)

The effect of the shocks is characterized by a stochastic
variable with the normal distribution in the present paper
¢i(1)=E&(1)a(t) with &(r)~N(0,1) and «;(r) >0. Since the
internal dynamical system of node i, £; [Eq. (5)], is a linear
system that is asymptotically stable, the impulse response
h;i(m) of the linear system satisfies [15]

lim h;,(m)=0.

m-—o

(A1)

Suppose that

hi(m)=0 for m> M. (A2)

Assume that the network dynamics of node i [Eq. (6)] has
initial conditions as y,-(t):y;k and ¢,(t)=0 for r<0. Then
R,(t)=0 for t=<1. Thus Eq. (6) can be rewritten as

1

yit) - yr = 2 [pi(m) + Ri(m)Jh(t—m), t=1.
m=max(1,—M)
(A3)
Considering that R,(1)=0, we have from Eq. (A3)
Y1) =y" + ¢(1)A(0). (A4)
Let
L
and
L
A,(l):Nz wiy(l), j=1,2,....N. (A6)

As y,(1) conforms to the normal distribution with mean yl*
and variance [a;(1)h,(0)]%, A ;(1) conforms to the normal dis-
tribution with the mean

E[A[(1)] =47 (A7)
and the variance
! N
DIA;(D]= 5 2 La(D (0w . (A8)
I=1

Assume that the number of nodes N is sufficiently large.
Then D[A;(1)] converges to 0 and stochastic variable A (1)
converges to A;k. According to Eq. (3),

N
0i(2)=y(1)| 2 N—y@Lw —k;

ij il- (A9)
=1
! sz,jyz(l)

=1

Since N is sufficiently large,
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& vk
0,(2) = y(1) E%Wi,j_ki . (A10)
o NA;
As with stochastic variable A (1), stochastic variable
Eﬁl%ﬁwi’j converges to its mean
N N %
(1k: vok;
B*=E EXL)*lwij =Sy (AL
i S ONAT )T A NATT
j j
Therefore,
0i(2) = y(1)[B] - k]. (A12)
According to Eq. (4),
0 =v;[B; - k. (A13)
Thus, according to Ri(t):Qi(t)—Qf,
R(2)=0,(2) - 0] = [y{(1) = y;1(B; k)
=l -y/107 ;. (A14)

From Eq. (A3),

i2) =y! +[Ri(2) + $(2)]1(0) + ¢(1)h(1). (Al5)
According to Egs. (A14) and (A15), both R,(2) and y,(2) are

stochastic variables with the normal distribution. Let

N
1
Aj(2)= NE wyyi(2). (A16)
=1

Taking into account of Eq. (Al5), like stochastic variable
A(1), stochastic variable A;(2) converges to

E[A;(2)] =A]i“. (A17)
Similar to the stochastic variable Ejyzlzé\%iwi!j, stochastic
variable Ejy:]yj\(,i)fk’wi’ j converges to Bl>P Therefore,
0:(3) =y2)[B; - k. (A18)
Thus,
Ri(3)=0,3) - Q] = (y/(2) - y))(B] —k;)
=2 -y)O ;. (A19)

By a similar calculation from Egs. (A15)—(A19), we have

t

=yl + 2 he=m{lym—1)-y10} 1y}
m=max(1,-—M)
+¢(m)}, (A20)
Rit+1)=[yi0) -y 10; Iy}, (A21)

where t=3,4,....
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APPENDIX B: RELATIONSHIP BETWEEN R;(+1)
AND y;(#) IN A NETWORK WITH AN EVOLVING
TOPOLOGY

Assume that the topology evolution is described by
w; j()=w; (0)+& (1) B, ;(t) with & (t)~N(0,1) and B, (1)
>0. By following the same procedure in Appendix A, in
which y:‘, Q;k, and w;; are replaced by y;k(O), Q?(O), and
w; (1), respectively, we will have

Ri(t+ 1) =[y(1) - y7(0)1Q;(0)1y; (0), (B1)

where r=1,2,3,....

Nevertheless, as w; ;(¢) is presently a stochastic variable,
the dealing with w; /(¢) in the corresponding equations needs
to be clarified. Equations (A5)—(A8) are taken as examples
for the dealing with w; ;(1).

We rewrite Egs. (A5) and (A6) as

N
o 1 ‘
Al =1 2w (0)y;(0) (B2)
=1

and

PHYSICAL REVIEW E 79, 026107 (2009)

N
A1) = 1%]2 wy(Dy/(1), (B3)
=1

respectively. As y;(1) conforms to the normal distribution
with mean yl*(O), and w, (1) conforms to the normal distri-
bution with mean w; ;(0) as well, A;(1) conforms to the nor-
mal distribution with the following mean:

E[A,(1)] =Aj. (B4)

Let o7 be the variance of the stochastic variable w; Ay, (1).
As y,(1) has the variance [a,(1)4,(0)]* and wy (1) has the
variance [B,;(1)]% there exists a real number M, o;<M,.
Then,

N
DIA]< 253 (M) (B5)
=1

Assume that the number of nodes N is sufficiently large.
Then D[A/(1)] converges to 0 and stochastic variable A (1)
converges to A:
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